Goal-Driven Multi-Turn Dialog Processing: From Call Routing Search to Entropy Minimization Dialogue Management

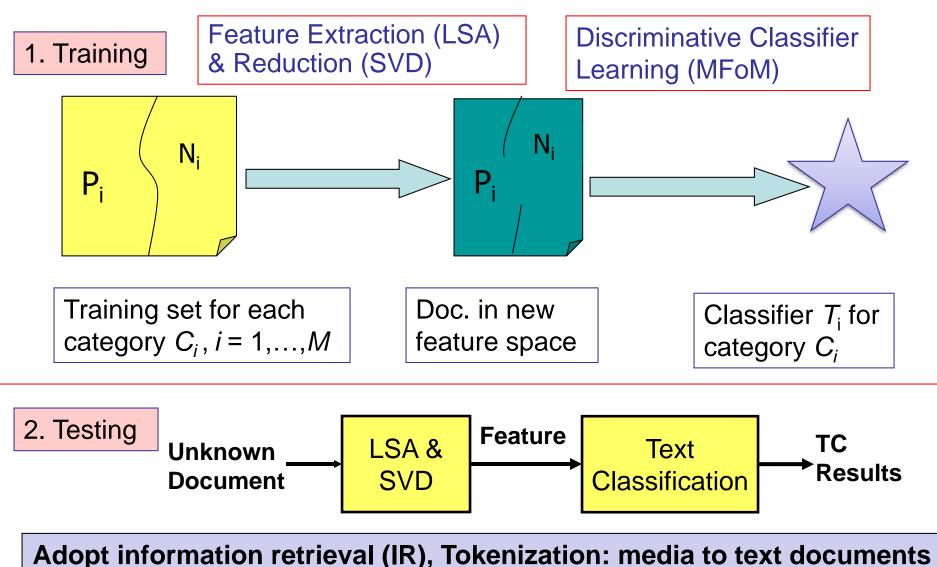
Chin-Hui Lee School of ECE, Georgia Tech Atlanta, GA 30332-0250, USA chl@ece.gatech.edu

Collaboration with colleagues at BL, NUS, I2R & Tsinghua

Talk Outline

- Discriminative text categorization: unification
 For speech, music, image & video via tokenization
- Call routing (CR) based on text categorization (TC)
 - Search with collaborative dialogues: USAA banking
 - Human-like machines outperform human agents
- A probabilistic representation of multi-turn dialogue
 - Dynamic stochastic dialogue state modeling, no training
- From call routing to multi-turn, goal-driven dialogue
 - Entropy minimization dialogue management (EMDM)
 - Experimental illustration and result analysis
- Summary

Text Categorization (TC) Unification



A Binary Classification TC Illustration

- *ModApte* split version of *Reuters-21578* task
 - Lexicon: 10118 words, remove 319 stop-words and words occurred less than 4 times
 - Experiments setup: 7,770/3,019 training/test documents,
 90 topics, some with only few positive training instances
 - Gao, *et al*, SIGIR2003, my first paper from NUS, maximal figure of merit (MFoM) discriminative training (DT) is key
 - Using simple LDF as classifiers, DT on weight vectors

	<i>k</i> -NN	SVM	Binary F ₁ -MFoM
micR	0.834	0.812	0.857
micP	0.881	0.914	0.914
micF ₁	0.857	0.860	0.884
macF ₁	0.524	0.525	0.556

Binary vs. Multi-Category MFoM DT (Gao, *et al*, ICML 2004, ACM T-IS 2006, Binary MFoM better than SVM, SIGIR2003)

Category	# of Training instances	Binary MFoM	MC MFoM
Income	9	0.429	0.600
Oat	8	0.167	0.500
Platinum	5	0.286	0.833
Potato	3	0.333	0.750
Sun-meal	1	0.000	0.667

 F₁ -based comparison (Gao, *et al*, ICML2004): Multi-Class MFoM works better for training with little positive samples

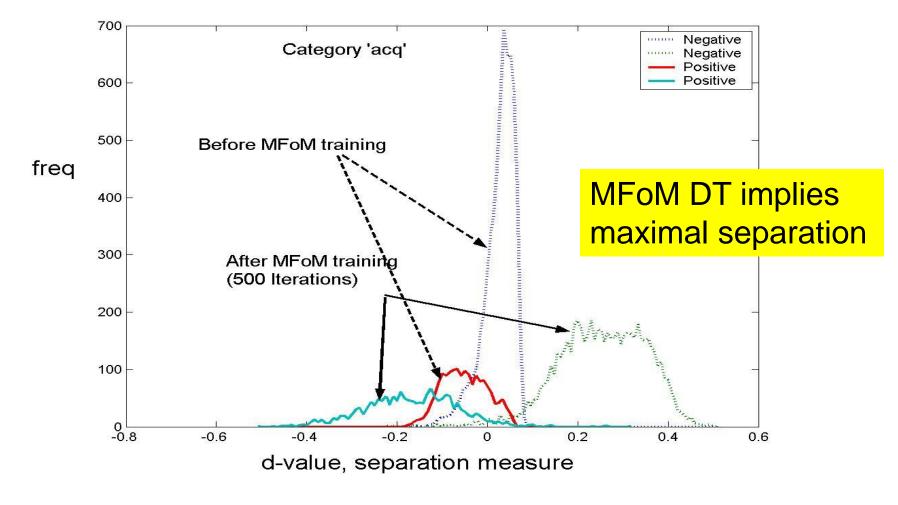
Maximal Figure-of-Merit (MFoM) Learning

- Distance based loss: $l_k(X_i, \Lambda) = l(d_k) = 1/\{1 + \exp[-a(d_k + b)]\}$
- Overall empirical type I error maximal separation $L_{k1}(\Lambda) = 1/V_{k1} \sum_{i=1}^{V} l_k(X_i, \Lambda) 1(X_i \in C_k)$
- Overall empirical type II error (Gao & Lee, SIGIR2003) $L_{k2}(\Lambda) = 1/V_{k2} \sum_{i=1}^{V} [1 - l_k(X_i, \Lambda)] 1(X_i \notin C_k)$
- Overall empirical loss to be minimized (any figure of merit or FoM: precision, recall, F₁ etc.): e.g., AUC

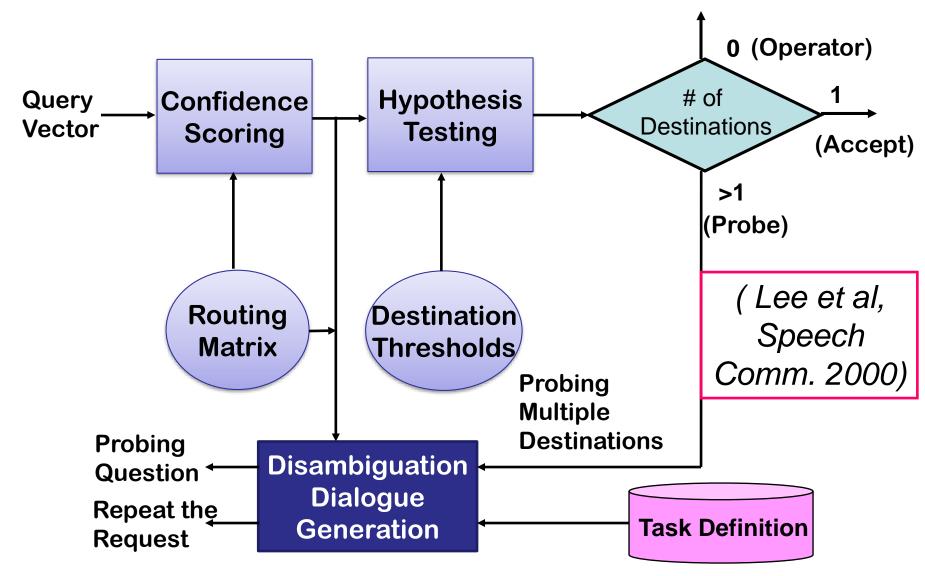
$$U = \sum_{i=1}^{M} \sum_{j=1}^{N} I(x_i, y_j) / MN$$
 (Gao & Lee, ICPR2006)

Epoch-based generalized probabilistic descent (GPD)
 5000 iterations

Class Separation before & after MFoM (Gao, et al, SIGIR 2003, ICML 2004, ACM T-IS 2006)



A Dialogue-Based Call Router



Task Analysis – USAA Banking (Last Major Project at BL -- ASR , NLP & BU)

- USAA Banking task: utilizing text categorization
 - Mostly veterans and their families (lots of naïve users)
 - Call directors handles over 1000 lines, need to double the agents and the space for the equipment
 - Call directors cost about 80% in a call center, cutting down connection time means big savings
 - 23-40 destinations for automation (cover +99% traffic)
- Catch-all number (Natural Language Call Routing)
 - People call for many purposes (ambiguous request)
 - Call directors are not well-trained (high turnover rate)
- Task could be very challenging: high ASR errors

Vector-Based Routing Matrix (from IR) Adopt information retrieval (IR), Tokenization: media to text documents Cooperation of the second Motore Deposite Service *Features:* trigram = word triplet, **bigram** = word pair, **unigram** = single word **Forming Query Vectors** trigrams home, equity, loan > 3 times new,auto,loan bigrams bank,card Routing > 3 times current, rate Matrix unigrams annuity > 2 times

In call routing, multiple word co-occurrence increases indexing power

Examples of User Requests

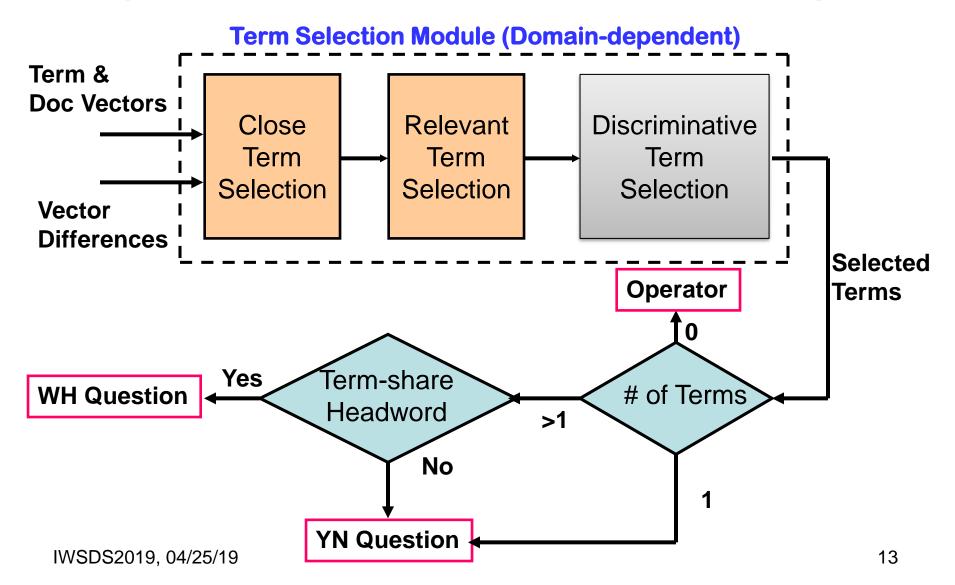
Category	Query Examples
1. Direct Request	"Yes ma'am. I'm trying to find someone in <i>deposit services."</i>
-	"Uh, please connect me to <i>credit card</i> services."
2. Activity Request	"Yes I need to speak to someone about <i>wiring money to my checking account</i> ."
-	"Um I need the <i>blue book value</i> of a vehicle I am thinking about buying."
3. Ambiguous Request	"I need some information on <i>auto loans."</i> or "I want to <i>transfer some money</i> ."

Example of Disambiguation Probes

Ambiguity	Triggers	Department
Balance	CD, checking, savings, IRA	Deposit Services
-	Visa, Mastercard, credit card	Credit Card Services
-	Loan	Loan Servicing

Disambiguation queries are needed to resolve the request

Disambiguation Dialogue Generation (Automatic Search Refinement)



A Disambiguation Dialogue Example

- User Request: "Ioan information, please."
 - Two candidates Consumer Lending or Loan Servicing
- Closeness Selection: gives 60 terms
 - For each candidate destination, compare term vectors with difference vectors and select 30 "close" terms
- Relevance Selection: reduces to 27 terms
 - Select "relevant" terms that form a valid n-gram when combining with terms in the original request (e.g. if "car,loan" is in the original query vector, then "new" is a relevant term to form the valid term "new,car,loan"

Disambiguation Dialogue (Cont.)

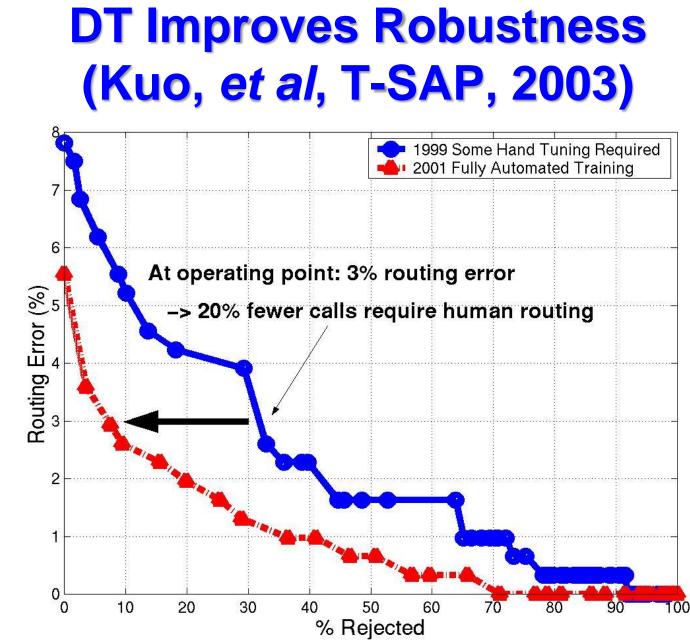
- Disambiguation power selection: gives 18

 Select terms that will form an unambiguous query
- Select terms with shared head (key indexing) words:
 - Give 11 terms with the head word "loan"
 - Generate a WH question: "for what type of loan?"
 - User Response: "I'd like a car loan."
- System generates a YN Question:
 - System: "is it about an existing loan?"
 - User Answer: "no, it is a new car loan."
- Ambiguity resolution: usually in three turns
- Generalization:
 - Search as multi-turn collaborative entropy minimization

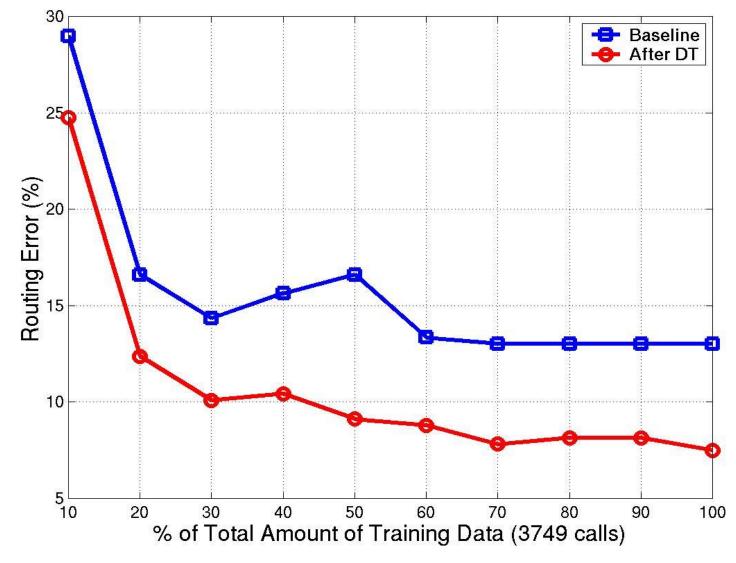
Performance: Fully Automatic Training

- Term extraction gives 7434 term features (2756 trigrams, 3442 bigrams and 1236 unigrams)
- LDF with only 1236 unigram-based LSA features
- Weights trained with discriminative training, or DT (Gao. *et al*, SIGIR2003, ICML2004, ACM T-IS, 2006)

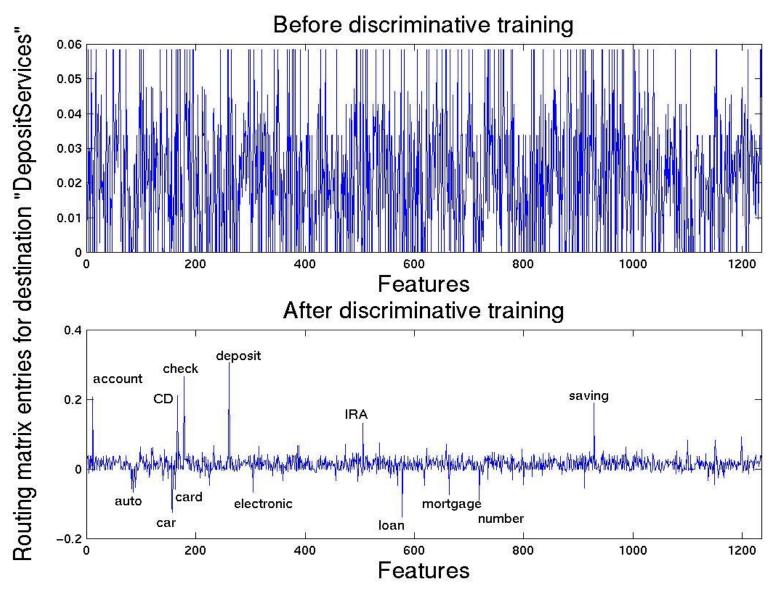
Category	Text Error	Speech Error
Baseline	9.12%	12.7%
After DT	5.54%	7.82%
Improvement	39%	38%



DT Reduces Training Requirements



DT with Features & Anti-Features

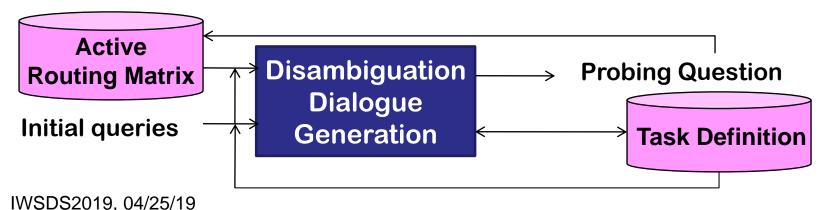


USAA Field Trial Results

- "Trained" human agents 87% correct routing
- 1309 calls with USAA customers for 2 weeks
 - 96.2% accuracy (8.5% "rejected" to human agents)
 - 93% of customers surveyed show non-negative preference
- NLCR: exceeding USAA expectation
 - Perform better than the human agents
 - Cut down connection time greatly (from 80 to 20 seconds)
- Why USAA went to Nuance eventually?
 - Lucent did not know how to price solutions !!
- *Newsweek* issue on speech business (2001)

Search with Dialogue Disambiguation

- Search as a goal-driven, system-initiated dialog process
 - Why generating a list not giving specific answers?Accommodating both novice and expert users
- Search as a collaborative ambiguity minimization problem
 - -- Focusing on document and term after each turn taking -- Probing actively seeking efficient and effective results
- Progressive task information integration and refinement
 - -- Adjustable term/term & document/document distances
 - -- Usable dialog history in the current and past sessions



From Single- to Multi-Turn Dialogues

- Technology dimensions
 - Goal: user's intents from the system (task-defined)
 - Attribute: properties used to identify a goal
 - State: current dialogue situation
 - Action: system questions and user responses
 - Policy: system strategies about what actions to take
 - History: sequences of system questions & user responses
- Dialog management (DM)
 - Maintaining the states of the dialogue process
 - Acting according to system policies and user responses
- Search: as a collaborative multi-turn goal-driven dialogue

Dialogue Management Approaches

- Conventional techniques
 - Rule-based with semantic frame-filling or graph-directed
 - Deterministic and pre-defined states
- Statistical techniques: data not easy to collect
 - Markov decision process (MDP): states are discrete, and described by a few simple components, often not scalable
 - Partially observable Markov decision process (POMDP): addressing ASR and NLU errors, a "belief state" is used for state probability distributions at a specific time
- Our proposal: entropy minimization DM (EMDM)
 - Collaborative, goal-driven, task-based, no training
 - DS-states: constructed dynamically and stochastically

An MDP-based State Sequence

 Album Disney's "Frozen" was first given by a user, but the goal "Let It Go" could only be reached after all the discrete components in each state are filled

Singer	=	?	1	Singer	=	?	1	Singer	=	Idina Menzel
Gender	=	?		Gender	=	?		Gender	=	female
Region	=	?			Region = ?	Region	=	USA		
<i>Albu</i> m	=	?		Album	=	Frozen		Album	=	Frozen
Company	=	?		Company	=	?		Company	=	Disney
Language	=	?		Language	=	?		Language	=	English
Lyricist	=	?	7	Lyricist	=	?	77	Lyricist	=	Lopez
Composer	=	?		Composer	=	?		Composer	=	Lopez
Live	=	?		Live	=	?		Live	=	no
Time	=	?		Time	=	?		Time	=	2013
Style	=	?		Style	=	?		Style	=	popular
Emotion	=	?		Emotion	=	?		Emotion	=	exciting
Initial Stat	Initial State: S ₀		5	1			Fina	l Sta	ate: S _J	

Dynamic Stochastic (DS-)States

- States are dynamically and stochastically defined on the current dialogue situation, but not pre-fixed
- With additional information in the dialogue process, the search space is usually reduced gradually
- The system examines the remaining search space and formulates disambiguation questions related to the attributes with the maximum entropy in order to reduce the overall uncertainty in follow-up dialogues
- Number of turns can be minimized accordingly
- ASR and NLU errors can also be handled (later)

A Song-on-Demand (SoD) Task

- 38117 songs (goals), 10322 albums, 3020 singers
- 12 key attributes of a song and their statistics
 - Most representative: singer, album, time
 - Missing: Style (54%), Composer (50%), Emotion (20%)

ID	Attributes	Description	Value Numbers
1	Singer	The name of the singer	3021
2	Gender	The gender of the singer	2
3	Region	The region of the singer	19
4	<i>Albu</i> m	The album on which the song appears	10322
5	Company	The publisher of the song	1193
6	Language	The language of the song	10
7	Lyricist	The lyricist of the song	5603
8	Composer	The composer of the song	5642
9	Live	Live version or not	2
10	Time	The release date of the song	413
11	Style	The style of the song	346
12	Emotion	The emotion of the song	59

A Probabilistic Dialog Representation

For a task *D*, the probability of the entire dialog is:

- Overall *J*-turn prob.: $P(\mathbf{S}, \mathbf{Q}, \mathbf{R} | D) = P(\mathbf{S}_1^J, \mathbf{H}_1^J | D)$
- Prior prob. for each goal i: $P^{(0)}(g_i | D), g_i \in \mathbf{G}$
- Prob. of goal *i* at state *j*: $P^{(j)}(g_i | S^{(j)}, D) = P^{(j)}_i$
- Prob. of reaching state $j : P^{(j)}(S^{(j)} | [q^{(l)}, r^{(l)}]_{l=1}^{j}, D)$
- **1. Prob. of state evolution:** $P_s^{(j)} = P(S^{(j)} | S^{(j-1)}, \mathbf{H}_1^j, D)$
 - 2. Prob. of next system question: $P_q^{(j)} = P(q^{(j)} | S^{(j-1)}, D)$
 - **3. Prob. of next user response:** $P_r^{(j)} = P(r^{(j)} | q^{(j)}, S^{(j-1)}, D)$
 - Prob. of current dialog situation:

$$P(q^{(j)}, r^{(j)}, S^{(j)} | \mathbf{S}_1^{j-1}, \mathbf{H}_1^{j-1}, D) = P_s^{(j)} * P_q^{(j)} * P_r^{(j)}$$

Goal-Oriented Entropy Characterization

- For a multi-turn dialogue, to reach a particular goal in a set of goals, $\{g_i |_{i=1}^J\}$, we have the following:
- Initial entropy: $E^{(0)} = \sum_{i=1}^{l} -P^{(0)}(g_i \mid D) \log P^{(0)}(g_i \mid D)$
- Entropy at state *j*: $E^{(j)} = \sum_{i=1}^{I} -P^{(j)}(g_i \mid D) \log P^{(j)}(g_i \mid D)$
- Entropy evolution through multi-turn dialogue:
 - Entropy minimization dialogue management (EMDM)

$$E^{(0)} > E^{(1)} > \dots > E^{(J)} \ge 0$$

DS-State Goal Set and Entropy

For a multi-turn dialogue, we have the following:

- Goal set at DS-state $S^{(j)}$: $\mathbf{G}^{(j)}$ (Wu, Li & Lee, T-ASLP, 2015)
- Entropy of $S^{(j)}$: $E^{(j)}(\mathbf{G}^{(j)}) = \sum_{i \in \mathbf{G}^{(j)}}^{I} P_i^{(j)} \log P_i^{(j)}$
- Prob. of *m*-th answer for *k*-th attribute in $S^{(j)}$ is $P_{k,m}^{(j)}$
- Remaining goal entropy is: $E_{k,m}^{(j)}(\mathbf{G}^{(j)}) = -\sum_{i \in \mathbf{G}_{k,m}^{(j)}} \frac{P_i^{(j)}}{P_{k,m}^{(j)}} \log \frac{P_i^{(j)}}{P_{k,m}^{(j)}}$
- Expected entropy reduction: $E_k \{ E^{(j)} E_{k,m}^{(j)} (\mathbf{G}^{(j)}) \}$
- In [8], entropy reduction is equal to E_k^(j), i.e., asking questions related to maximum-entropy attribute, A_k

Dialogue Example 1: Three Turns

System: What can I do for you? User: I'd like to listen to a song.

• Attribute Album has the highest entropy (disambiguation)

System: On which album does the song appear? User: The song is on the album "My Room"

• 9 songs left: Attribute Lyricist has now the highest entropy

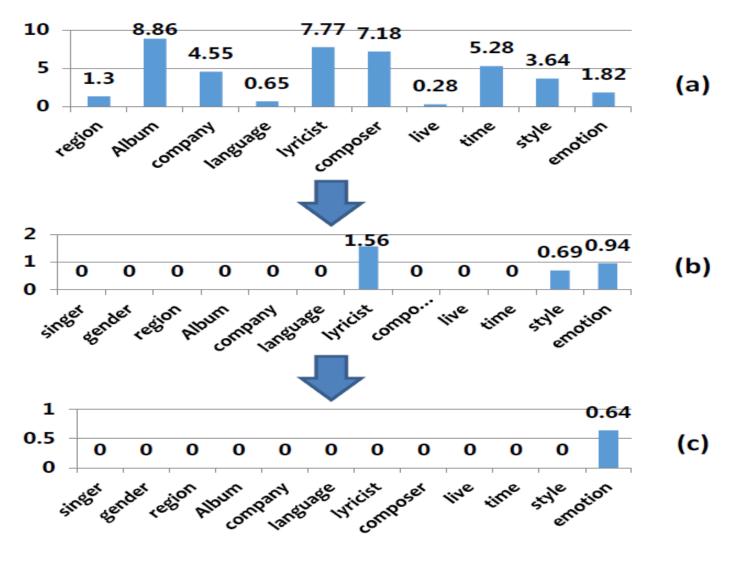
System: Who is the lyricist for that song? User: Peggy Hsu

• 3 songs left: Attribute Emotion has now the highest entropy

System: What about the emotion? User: It's a little bit sad.

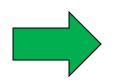
Goal: "Under The Moonlight"

Entropy Evolution Example with EMDM



Dialogue Example 2: Four Turns

System: What can I do for you? User: I would like a song by Maggie Chiang System: What kind of song? User: A popular one System: Who is the lyricist of that song? User: Peggy Hsu System: On what album does that song appear? User: It is on My Room.



Goal: "Under The Moonlight"

Experiment 1: Simulation, No Errors

- Single knowledgeable and cooperative user
- System begins asking a question about a particular attribute, then updates the goal set based on the user's response. This process continues until:
 - 1. Only one song remains in the candidate set, or
 - 2. Entropy of all 12 attributes drops to zero, or
 - 3. All 12 attributes have been inquired by the system
- Four DM strategies are compared: sequential, random, database summary DM (entropy-like), and EMDM, with the former three discussed in the DSDM paper (MDP/POMDP is hard to compare)

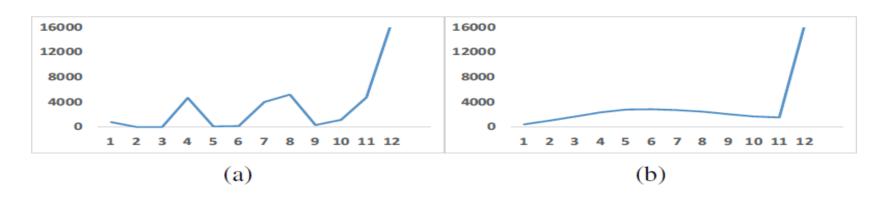
A Comparison of Average Dialog Turns

- 1. Sequential: choosing questions in a fixed order
- 2. Random: choosing attributes in a random order
- 3. DSDM: database summary DM (entropy-like)
- 4. EMDM: entropy minimization
- The first three were discussed in Polifroni/Walker)
- Uniform: no prior knowledge, uniform song density
- Sampling: density from dialog history, 500K times

Strategy	Sequential	Random	DSDM	EMDM
Uniform setting	9.30	8.30	3.33	3.31
Sampling setting	8.31	7.16	3.22	3.07

Histogram Comparison of Dialog Turns

- (a) Sequential, (b) Random, (c) DSDM, (d) EMDM
- (a) and (b) often require all 12 attributes to be asked
- (c) and (d) give less turns knowing some DB content





Detailed Comparison of EMDM & DSDM

- #E: number of EMDM dialogue turns
- *#D*: *number of DSDM dialogue turns*
- Both "probabilistic" strategies perform similarly in the uniform attribute selection setting
- *EMDM* works much better than DSDM when they perform differently (about 17%) in sampling setting

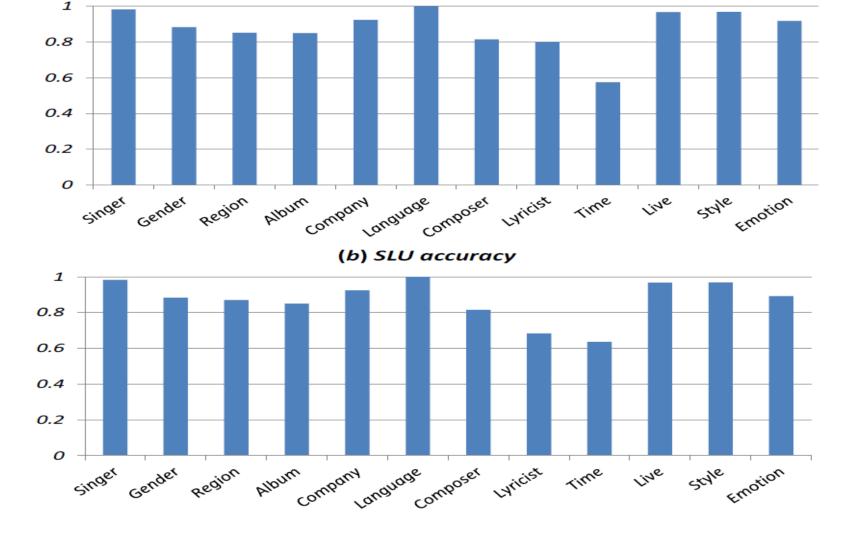
Strategy	#E<#D	#E=#D	#E>#D	total
Uniform	4.09%	93.68%	2.23%	38117
Sampling	15.38%	82.75%	1.87%	500,000

Experiment 2: with ASR & SLU Errors

- Online with 6 users, 10 songs each for 60 requests
- For DSDM and EMDM, top SLU candidates can be used to update DS-state to get follow-up questions

Strategy	Sequential	Random	DSDM (Top 5)	EMDM (Top 5)
ASR accuracy	90.9%	89.3%	84.5% (88.7%)	85.4% (89.2%)
SLU accuracy	90.6%	88.5%	82.7% (88.4%)	83.5% (88.8%)
Dialog success rate	50.0%	61.7%	80.0%	86.7%
# of dialog turns	8.75	6.23	5.63	5.17

IWSDS2019, 04/25/19



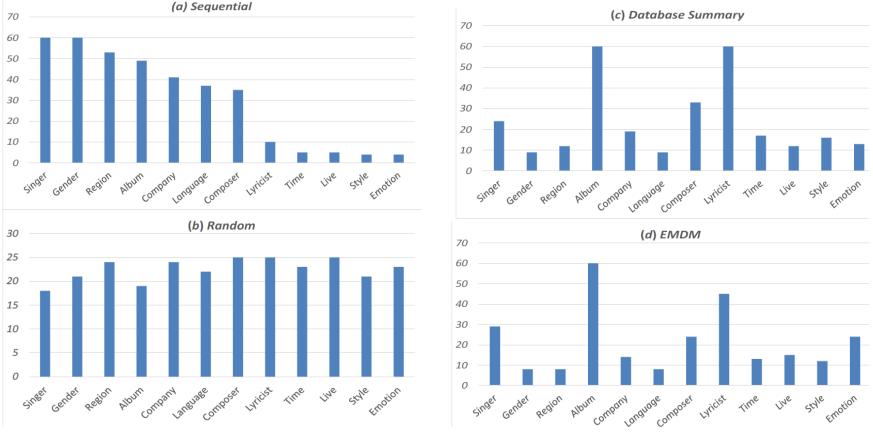
(a) ASR accuracy

Accuracies with ASR/SLU Errors

38

Distribution of the Attribute Questions

- Sequential: later attributes were less inquired
- Random: uniform distributions
- DSDM and EMDM: similar distribution



Summary

- Text categorization: a unifying theme for multimedia document search and retrieval
- Call routing: multi-turn IR dialogue for search
- Stochastic representation of dialogs
- Dynamic stochastic (DS-)state and entropy
- EMDM outperforms competing dialog strategies
 A new system-initiated DM strategy with no training
- Tunable DM: a simulation tool for data collection?
- JDAI's recent goal-driven competition: new interest?

Key References

- 1) C.-H. Lee, R. Carpenter, W. Chou, J. Chu-Carroll, W. Reichl, A. Saad, and Q. Zhou, "On Natural Language Call Routing," *Speech Communication*, Vol. 31, pp. 309-320, 2000.
- 2) H.-K. J. Kuo and C.-H. Lee, "Discriminative Training for Robust Natural Language Call Routing," *IEEE Trans. on Speech and Audio Proc.*, Vol. 11, No.1, pp. 24-35, Jan. 2003.
- 3) S. Gao, W. Wu, C.-H. Lee and T.-S. Chua, "A Maximal Figure-of-Merit Learning Approach to Text Categorization," *ACM SIGIR*, pp. 174-181, Toronto, Canada, July 2003.
- 4) S. Gao, W. Wu, C.-H. Lee and T.-S. Chua, "A Maximal Figure-of-Merit (MFoM) Learning Approach to Robust Classifier Design for Text Categorization," *ACM Trans. on Information Systems*, Vol. 2, No. 4, Issue 2, pp. 190-216, April 2006. (text)
- 5) H. Li, B. Ma and C.-H. Lee, "An Acoustic Segment Modeling Approach to Universal Acoustic Characterization and Spoken Language Identification," *IEEE Trans. Audio, Speech and Language Proc.*, Vol. 15, No. 1, pp. 271-284, January 2007. (spoken language ID)
- 6) J. Reed and C.-H. Lee, "Preference Music Ratings Prediction Using Tokenization and Minimum Classification Error Training," *IEEE Trans. Audio, Speech and Language Proc.*, Vol. 19, No. 8, pp. 2394-2303, Nov. 2011. (music and audio retrieval)
- I. Kim and C.-H. Lee, "An Efficient Gradient-based Approach to Optimizing Average Precision through Maximal Figure-of-Merit Learning," *Journal of Signal Processing Systems*, Vol. 64, No. 9, pp. 1-11, Sept. 2013. (image/video retrieval)
- 8) J. Wu, M. Li and C.-H. Lee, "A Probabilistic Framework for Representing Dialog Systems and Entropy-Based Dialog Management through Dynamic Stochastic State Evolution," *IEEE/ACM Trans. Audio, Speech and Language Proc.* Vol. 23, No. 11, pp. 2026-2035, 2015. (speech)

Acknowledgment

