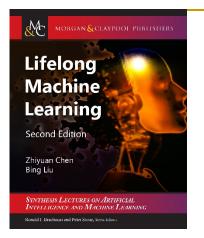
Lifelong Learning and Continuous Knowledge Learning in Chatbots

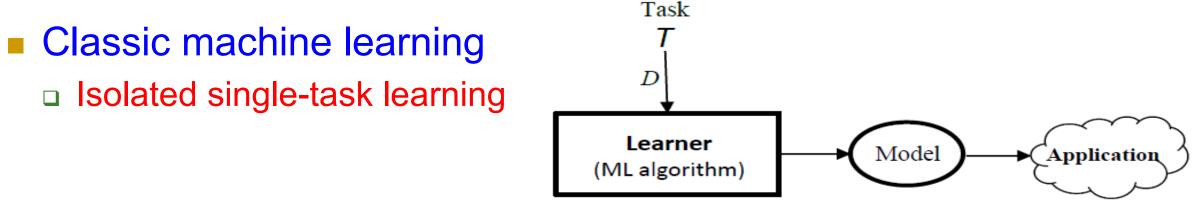


Bing Liu

Department of Computer Science University of Illinois at Chicago liub@uic.edu

Introduction

Learning is key to all human and AI agent activities



- Knowledge learned not accumulated or used in new learning
 - Needs a large number of training examples: cannot expect humans to label everything in the world.
 - Manual labeling of data has become an industry! No education bg needed.
 - Suitable for well-defined tasks in restricted and closed environment

Lifelong learning (Chen and Liu, 2016-book)

Humans never learn in isolation or from scratch. We

- Iearn continuously and accumulate knowledge learned in the past and use it to learn more & to learn better.
- Iearn in open environments in a self-supervised manner
- Lifelong Learning (LL): imitate this human learning capability

Goal: Create a machine that learns like humans

- □ Without it, a system will never achieve
 - human-level intelligence or Artificial General Intelligence (AGI)

Practical applications need LL

- Chatbots, personal assistants, self-driving cars, and other physical robots, working in real-life environments need LL.
 - Chatbots will not be intelligent if they cannot learn more knowledge after they are deployed
 - Impossible to know what people may say.
 - Little of our ability to converse about any subject matter is learned formally.
 - Self-driving cars are not going to fly with only rules and off-line training
- They face the real open world. No closed-world assumption.
 They have to continuously learn and accumulate knowledge and adapt to new situations in a self-supervised manner.

Outline

What is lifelong learning?

- Continual learning and meta-learning
- Open world learning
 - Its use in Intelligent Personal Assistant
- Learning on the job in the open world
 - Continuous knowledge learning in chatbot
- Summary

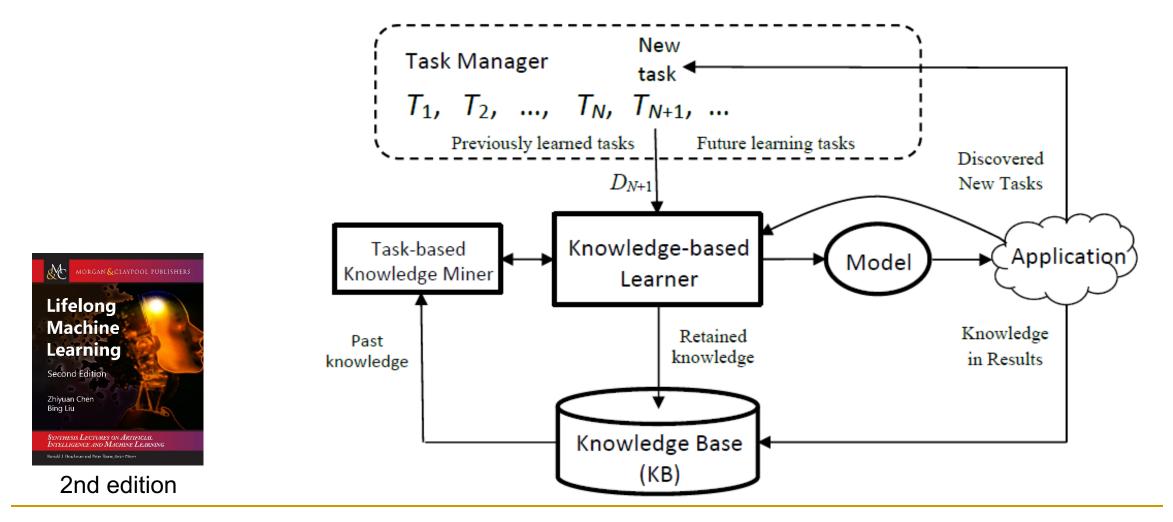
Definition of lifelong learning (LL) (existing) (Thrun 1995, Silver et al 2013; Chen and Liu, 2016 –book)

The learner has performed learning on a sequence of tasks, from 1 to N.

- When faced with the (N+1)th task, it uses the relevant knowledge in its knowledge base (KB) to help learn the (N+1)th task.
- After learning (N+1)th task, KB is updated with learned results from (N+1)th task.

Definition of lifelong learning (LL) (new)

(Thrun 1995, Silver et al 2013; Ruvolo & Eaton, 2013, Chen & Liu 2014, Fei et al 2016, Shu et al 2017a, 2017, Chen & Liu, 2018)



Key characteristics of LL (Chen and Liu, 2018-book)

- 1. Continuous learning process (w/o supervision)
- 2. Knowledge accumulation in KB (long-term memory)
- 3. Using/adapting the past knowledge to help future learning
- 4. Learning in the open world, discovering new tasks & learning them incrementally in an *interactive environment* with self-motivation
- Learning on the job or learning while working, during model application or testing
- Both (4) and (5) need some form of self-supervision using agents' own knowledge and environmental feedback

Two Types of Shared Knowledge

- Global knowledge: These methods assume a global latent structure among tasks that are shared (Thrun, 1996, Ruvolo and Eaton, 2013, Bou Ammar et al., 2014, ...)
 - □ Global structure L: learned and leveraged in the new task learning.

$$\boldsymbol{\theta}^t = \mathbf{L}\mathbf{s}^t$$

- Local knowledge: do not assume a global latent structure among tasks (Chen and Liu, 2014a,b, Fei et al., 2016, Liu et al., 2016, Shu et al., 2016, 2017).
 - During the new task learning, they select or meta-mine those pieces of prior knowledge to use based on need.

Approach: shared global knowledge (Ruvolo & Eaton, 2013)

 Each model's parameter vector θ^t is a linear combination of the weight vector s^t and the basis model components L (Kumar et al., 2012).

$$oldsymbol{ heta}^t = \mathbf{L}\mathbf{s}^t$$

Initial objective function

$$e_{T}(\mathbf{L}) = \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{s}^{(t)}} \left\{ \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \mathcal{L}\left(f\left(\mathbf{x}_{i}^{(t)}; \mathbf{L}\mathbf{s}^{(t)}\right), y_{i}^{(t)}\right) + \mu \|\mathbf{s}^{(t)}\|_{1} \right\} + \lambda \|\mathbf{L}\|_{\mathsf{F}}^{2}, \quad (1)$$

Lifelong topic modeling

(Chen and Liu 2014)

Use results from past tasks to find some topical knowledge

- e.g., {price, cost} & {price, expensive}
- Use it to guide new task modeling
- Graphical model: same as LDA, but different inference
 Generalized Pólya Urn Model (GPU)
- Idea: When assigning a topic t to a word w, also assign a fraction of t to words in must-links sharing with w.

$$P(z_i = t | \boldsymbol{z}^{-i}, \boldsymbol{w}, \alpha, \beta, \mathbf{A}') \propto \frac{n_{d,t}^{-i} + \alpha}{\sum_{t'=1}^{T} (n_{d,t'}^{-i} + \alpha)} \times \frac{\sum_{w'=1}^{V} \mathbf{A}'_{t,w',w_i} \times n_{t,w'}^{-i} + \beta}{\sum_{v=1}^{V} (\sum_{w'=1}^{V} \mathbf{A}'_{t,w',v} \times n_{t,w'}^{-i} + \beta)}$$

Open problems/challenges

- Is the past knowledge actually correct?
- Is the past knowledge actually applicable?
- What is past knowledge and how to represent it?

- LL forces us to think about the issue of knowledge and the role it plays in learning.
 - □ knowledge representation, acquisition, reasoning, maintenance, etc.

LL research is ramping up

Many related topics and names

- Lifelong learning
- Never-ending learning
- Continual learning (continuous learning)
- Open-world learning
- Meta-learning
- Developmental learning (in robotics)
- DARPA program (2018): Lifelong learning machines
- DARPA program (new 2019): Open-world learning (SAIL-ON)

Transfer, Multitask → Lifelong

Transfer learning: using source domain to help target domain,

- Learning is not continuous
- No accumulation of knowledge except data
- Only one directional: help target domain
- Multitask learning: Jointly optimize multi. tasks
 - No accumulation of knowledge except data
 - Hard to re-learn all when tasks are numerous

Both no discovery of new problems or learning in testing

Outline

What is lifelong learning?

Continual learning and meta-learning

- Open world learning
 - Its use in Intelligent Personal Assistant
- Learning on the job in the open world
 - Continuous knowledge learning in chatbot
- Summary

Continual learning and catastrophic forgetting

- Continual learning (CL) is mainly for solving the catastrophic forgetting problem in neural networks.
- Catastrophic forgetting (CF): learning a new task is likely change the weights that have been learned for past tasks,
 - degrading the models for past tasks.
 - like a human brain, ideally we want a network (like a brain) to learn many tasks with little interference (or little forgetting of the past).
- CL mainly aims to solve CF. Unlike lifelong learning, CL usually does not emphasize leveraging the past knowledge.

Meta-learning

- Meta-learning, also called *learning to learn*, is often used in one-shot or few-shot learning.
- It trains a meta-model with a large set of tasks. Each task has a set of labeled examples.
 - The learned model can quickly adapt to a new task using only a few examples (few-shot learning).
 - □ Basically, meta-learning treats all these tasks as training "instances."
- Assume: training tasks and test tasks same distribution
 But in real life, new tasks fundamentally different in some aspects.

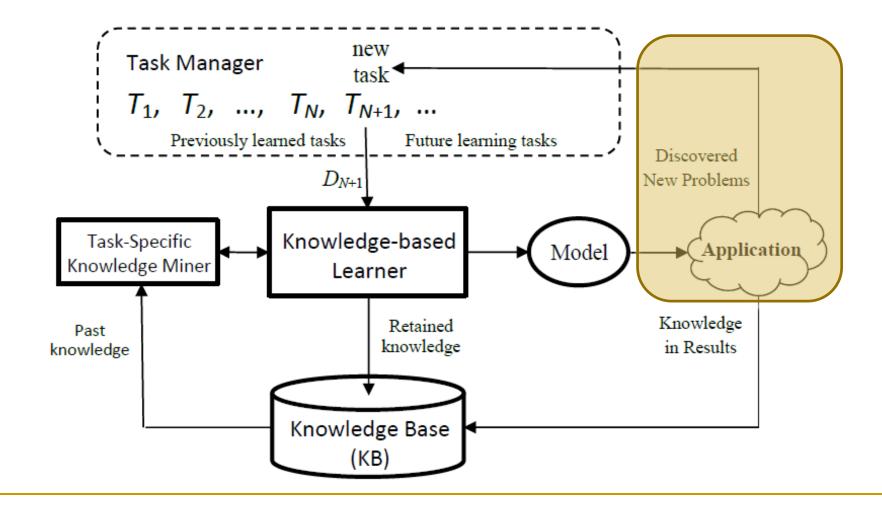
Outline

- What is lifelong learning?
- Continual learning and meta-learning
- Open world learning
 - Application in Intelligent Personal Assistant
- Learning on the job in the open world
 - Continuous knowledge learning in chatbot
- Summary

Open-world learning (Fei et al 2016, Chen and Liu 2016, 2018)

- Traditional learning makes the closed world assumption:
 - What the agent sees in training is what it will see in testing.
 - Nothing new or nothing unexpected.
- Clearly not true in the real-world (open) environment.
 - Self-driving cars will see things it has never been trained for.
 - □ A chatbat will definitely hear something that it does not know.
- Can the agent detects unknowns and learn them?
 - □ If so, it will become more and more knowledgeable.

Open-world learning (Fei et al., 2016; Shu et al., 2017)



Open-world Learning (OWL) (Shu, Xu and Liu 2018)

At any point in time, the learning system is aware of a set of seen classes S = {c₁, ..., c_m} and has an OWL model or classifier for S but is unaware of a set of unseen classes U = {c_{m+1}, ...} (any class not in S can be in U) that the model may encounter.

Goal:

Classify seen class instances and detect unseen class instances

- Group these instances into classes
- □ Learn the new classes incrementally

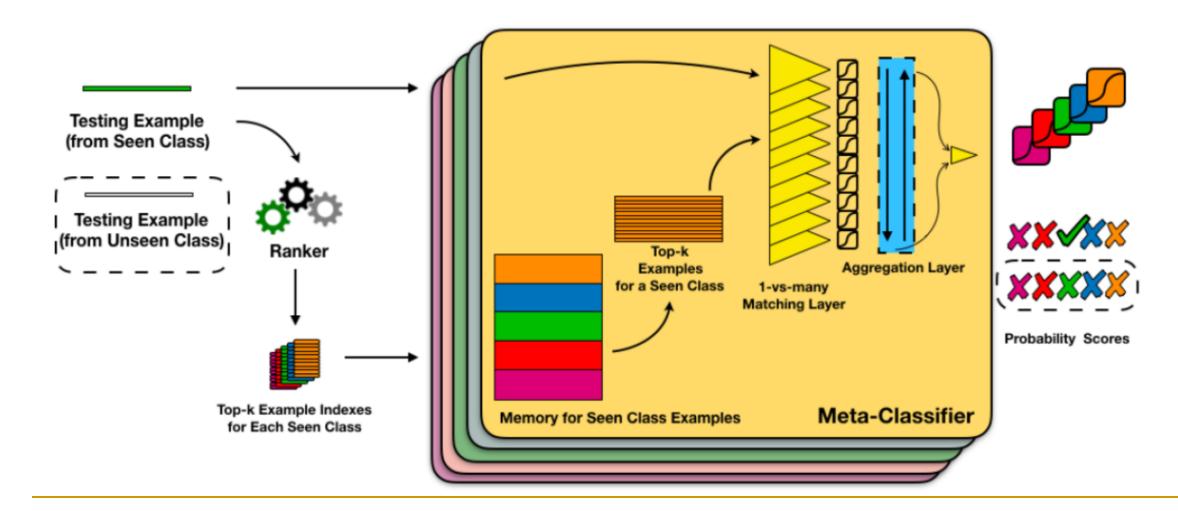
Intelligent Personal Assistant needs OWL (Xu et al, 2019)

- Intelligent Personal Assistants (IPA) (e.g., Amazon Alexa, Google Assistant, and Microsoft Cortana)
 - The first task is to classify user utterances into existing known intent classes (e.g., Alexa's skills) and
 - detect utterances from unknown intent classes (not supported)
- But, with the support to allow the 3rd-party to develop new skills (Apps),
 - IPAs must recognize new/unseen intent classes and include/learn them in the classification model.

Learning to Accept Classes (L2AC) (Xu et al, 2019)

- Goal of L2AC is two-fold:
 - (1) classifying examples from classes in S and reject examples from classes in U, and
 - (2) when a new class c_{m+1} (without loss of generality) is removed from U (now U = { c_{m+2} , ... }) and added to S (now S = { c_1 , ..., c_m , c_{m+1} }, still being able to perform (1) without retraining the model.
- L2AC maintains a dynamic set S of seen classes that allows new classes to be added or deleted with no model re-training needed.

L2AC architecture



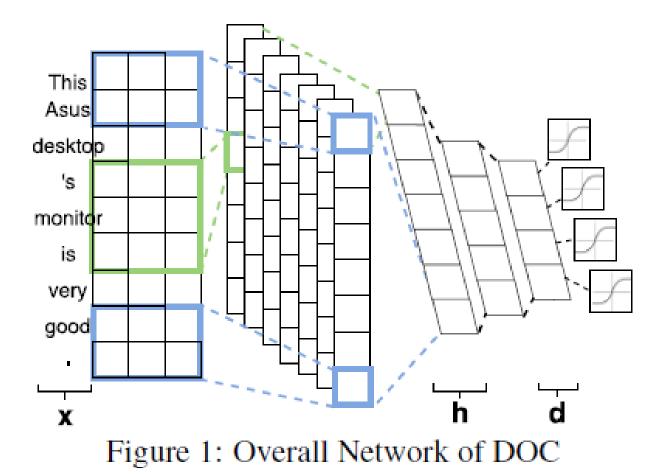
Training the meta-classifier

Since the meta-classifier is a general classifier that is supposed to work for any class, training the meta-classifier

$$p_{\theta}(c|x_t, x_{a_{1:k}|x_t, c})$$

- It requires examples from another set M of classes called meta-training classes.
- A large |M| is desirable to cover of features for seen and unseen classes in testing

DOC: Deep Open Classification (Shu et al. 2017)



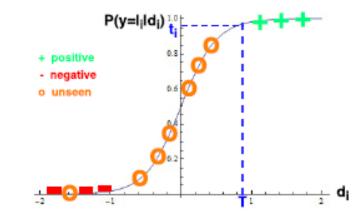


Figure 2: Open space risk of sigmoid function and desired decision boundary $d_i = T$ and probability threshold t_i .

Learning incrementally (cumulatively)

- How to discover classes (or characterize) in the unseen data?
- Incrementally add a class without retraining from scratch
- "Human learning": uses the past knowledge F_t to help learn the new class I_{t+1} .
 - Find similar classes SC from known classes Y^t .
 - Old classes: Y^t = {movie, cat, politics, soccer}.
 - New class: I_{t+1} = basketball
 - SC = {soccer}

• Building F_{t+1} by focusing on separating I_{t+1} and SC.

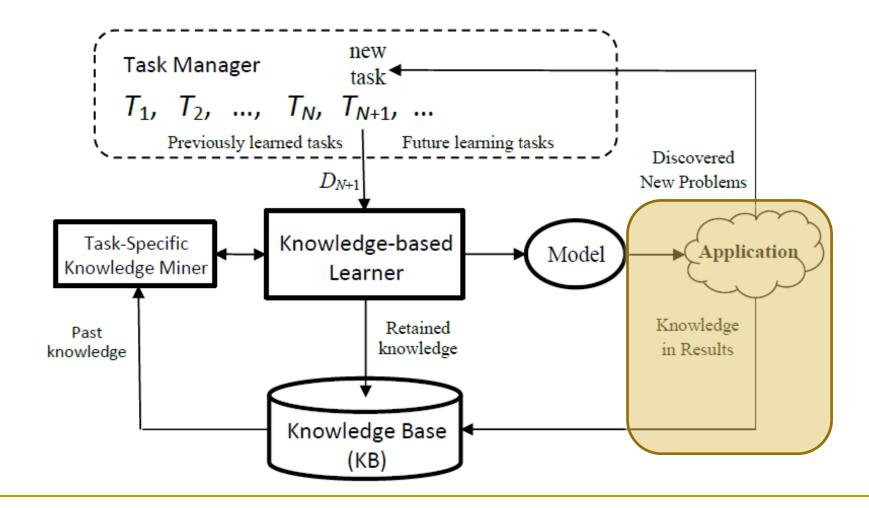
Outline

- What is lifelong learning?
- Continual learning and meta-learning
- Open world learning
 - Its use in Intelligent Personal Assistant
- Learning on the job in the open world
 Continuous knowledge learning in chatbot
- Summary

Learning on the job (while working) (Shu et al 2017)

- It is known in learning science that about 70% of our human knowledge comes from 'on-the-job' learning.
 - Only about 10% through formal training
 - The rest 20% through observation of others
- An Al agent should be able to learn on the job too as
 - The world is constantly changing.
 - There is always new knowledge, e.g., learning during humanmachine conversation (Mazumder et al., 2018)

Lifelong learning extended



Improving model in testing or application (Shu et al 2017)

- Can a model's performance be improved after training?
- This paper proposes a technique to do so in the context of CRF for information extraction.
- Idea: connect features with extraction results
 - $\ \ \, \square \ \, More \ results \rightarrow better \ features$
 - It exploits dependency features
 - As the model sees more data, more features are identified
 - The features help produce better results in the new domain using same model.

Chatbots: Learning during conversation (Mazumder et al., 2018)

Chatbots: Early chatbots were mostly built using

- markup languages, e.g., AIML
- handcrafted conversation generation rules, and/or
- information retrieval techniques
- Recently deep learning based approaches are popular
 - They may or may not use explicit knowledge bases (KB)
 - Without using explicit KBs, produce generic/dull responses
 - Use KBs to generate knowledge grounded responses.

Major shortcoming

- One major weakness of existing chat systems is that
 - They do not explicitly or implicitly learn new knowledge in the conversation process.
 - □ This limits the scope of their applications.
- Learning during chatting enables chatbots to
 - learn new knowledge to expand its KB to become more and more knowledgeable.
 - □ improve its conversation ability.

Continuous knowledge learning engine (Sahisnu at al., 2018)

- Ifelong interactive learning and inference (LiLi).
- We assume relation extraction, etc, are done by other systems
- Given a query (s, r?, t) from the user, the system has the following 4 capabilities
 - 1. to formulate an inference strategy for a given query that embeds processing and interactive actions.
 - Processing action: selection of related facts, deriving inference chain, etc., that advances the inference process.
 - Interactive action: deciding what to ask, formulating a suitable question, etc., that enable interaction with the user.

Lifelong interactive learning (contd.)

- 2. to learn interaction behaviors (deciding what to ask and when to ask the user).
- 3. to leverage the acquired knowledge in the current and future inference process.
- 4. to perform 1, 2 and 3 in a lifelong manner for continuous knowledge learning.
- We envision that the proposed system is incorporated in a chatbot in a multi-user environment.
 - The system can perform cross-verification with other users by asking them whether facts) from the particular user is correct.

LiLi: Modeled as Knowledge Base Completion

- We focus on fact triples: e.g., Obama is a citizen of USA
 (*Obama*, *CitizenOf*, USA)
- KB completion (KBC): a binary classification problem
 - Given a query triple, (s, r, t), predict whether the source entity s and target entity t can be linked by the relation r.
 - This problem is solved under the *closed-world* assumption, i.e., s, r and t are all *known* to exist in the KB
- For conversation, we need to remove this closed-world assumption

Open-world knowledge base completion (OKBC)

The new problem open-world knowledge base completion:

- □ s, r, or t may not be in the KB.
- 1. Mapping open-world to closed-world.
 - By asking the user questions to convert the open-world problem to a closed-world problem.
 - This acquires some new knowledge and will be added to KB
 - The updated with KB (more knowledgeable)
- 2. Solving the problem in the closed-world (C-PR).

□ Prediction – the prediction may not be correct, but not a problem.

- If the relation r is unknown, ask for a clue. ask the user to provide a clue (+ve example) c+.
- If an entity s/t is unknown, ask for connecting link (CLQ). Ask the user to connect unknown entities s and/or t with the KB.
 - System will suggest (the most contextually relevant node/entity)
- Ask missing link query (MLQ). Formulate a missing link query (MLQ) to ask the user
- Enumerate path features (for predictor).
- Invoke Predictor.

An example

- User: (Obama, CitizenOf, USA)? "Is Obama a citizen of USA?" [Query]
- LiLi: I do not know what "CitizenOf" mean? Can you provide me an example? [*Ask for Clue*]
- User: (David Cameron, CitizenOf, UK). "David Cameron is a citizen of UK." [SF1]
- LiLi: Got it. Can you tell me how "Obama" and "Honolulu" are related? [CLQ]
- User: (Obama, BornIn, Honolulu). "Obama was born in Honolulu." [SF2]
- LiLi: Got it. Can you tell also me how "Honolulu" and "Hawaii" are related? [MLQ]
- User: (Honolulu, CapitalOfState, Hawaii). "Honolulu is the state capital of Hawaii." [SF3]
- LiLi: (Obama, CitizenOf, USA) is correct. [Answer]

Table 4: Dataset statistics [kwn = known, unk = unknown]

KB Statistics	Freebase (FB)	WordNet (WN)							
# Relations ($\mathcal{K}_{org} / \mathcal{K}_b$)	1,345 / 1,273	18 / 12							
# Entities ($\mathcal{K}_{org} / \mathcal{K}_b$)	13, 871 / 13, 223	13, 595 / 13, 150							
# Triples ($\mathcal{K}_{org} / \mathcal{K}_b$)	854, 362 / 652, 790	107, 146 / 66, 338							
# Test relations (kwn / unk)	25 (17 / 8)	18 (12 / 6)							
# Train / valid / test instances	11,260 / 1223 / 7083	6628 / 711 / 3500							
Entity statistics in Test Data query triples [s = source entity ; t = target entity									
Avg. % triples per relation with only s unk	16.28	13.29							
Avg. % triples per relation with only t unk	16.29	10.94							
Avg. % triples per relation both s and t unk	4.69	4.17							

Prediction results

% TTO	Models	Freebase								WordNet									
		known Relations			unknown Relations		Overall			known Relations		unknown Relations			Overall				
		P(+)	F(+)	B-Acc	P(+)	F(+)	B-Acc	P(+)	F(+)	B-Acc	P(+)	F(+)	B-Acc	P(+)	F(+)	B-Acc	P(+)	F(+)	B-Acc
UN-FILTERED [evaluation on all test queries, irrespective of whether user can answer any CLQs or MLQs]																			
10%	F-th	0.54	0.40	0.58	0.48	0.22	0.52	0.53	0.34	0.56	0.75	0.35	0.59	0.52	0.58	0.64	0.59	0.47	0.62
	BG	0.48	0.52	0.62	0.42	0.50	0.53	0.46	0.51	0.59	0.64	0.66	0.74	0.44	0.54	0.57	0.54	0.61	0.69
	CKLE	0.51	0.55	0.64	0.45	0.38	0.53	0.49	0.50	0.60	0.63	0.58	0.69	0.61	0.6	0.68	0.62	0.59	0.69
	F-th	0.49	0.36	0.56	0.57	0.41	0.59	0.52	0.37	0.57	0.72	0.41	0.61	0.41	0.47	0.57	0.52	0.44	0.60
50%	BG	0.45	0.48	0.59	0.43	0.55	0.58	0.44	0.51	0.59	0.62	0.64	0.73	0.37	0.51	0.56	0.48	0.58	0.67
	CKLE	0.49	0.52	0.62	0.50	0.52	0.61	0.49	0.52	0.61	0.63	0.62	0.71	0.57	0.54	0.66	0.61	0.59	0.69
	F-th	0.50	0.36	0.56	0.53	0.39	0.58	0.51	0.37	0.57	0.73	0.40	0.61	0.39	0.48	0.56	0.49	0.44	0.59
100%	BG	0.46	0.50	0.60	0.42	0.55	0.60	0.44	0.52	0.60	0.62	0.62	0.71	0.36	0.50	0.55	0.48	0.57	0.65
	CKLE	0.49	0.51	0.62	0.48	0.52	0.61	0.49	0.51	0.62	0.64	0.63	0.72	0.59	0.55	0.66	0.62	0.60	0.70
FILTERED [evaluation on test queries for which user has answered atleast one CLQs or MLQs (when asked)]																			
	F-th	0.53	0.49	0.55	0.52	0.32	0.51	0.53	0.43	0.53	1.0	0.24	0.56	0.81	0.85	0.7	0.85	0.52	0.58
10%	BG	0.58	0.62	0.62	0.56	0.65	0.58	0.57	0.64	0.61	0.86	0.88	0.57	0.90	0.95	0.83	0.88	0.90	0.68
	CKLE	0.56	0.61	0.60	0.5	0.47	0.51	0.54	0.57	0.57	1.0	0.70	0.77	0.8	0.8	0.65	0.90	0.74	0.71
50%	F-th	0.49	0.47	0.54	0.59	0.46	0.52	0.53	0.46	0.53	0.86	0.43	0.34	0.78	0.75	0.64	0.81	0.57	0.48
	BG	0.51	0.58	0.58	0.56	0.68	0.52	0.54	0.57	0.62	0.91	0.92	0.60	0.81	0.86	0.63	0.87	0.90	0.62
	CKLE	0.52	0.58	0.58	0.59	0.6	0.53	0.54	0.59	0.56	0.93	0.78	0.68	0.80	0.76	0.58	0.88	0.77	0.62
100%	F-th	0.52	0.49	0.54	0.54	0.45	0.50	0.52	0.48	0.53	0.88	0.45	0.44	0.83	0.82	0.53	0.85	0.61	0.44
	BG	0.51	0.58	0.56	0.53	0.66	0.51	0.52	0.61	0.55	0.91	0.92	0.59	0.87	0.91	0.66	0.89	0.92	0.62
	CKLE	0.53	0.60	0.58	0.54	0.59	0.51	0.53	0.60	0.56	0.94	0.83	0.66	0.87	0.82	0.66	0.91	0.82	0.64

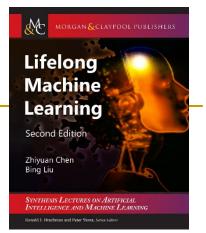
Table 5: Comparison of predictive performance of various versions of CKLE [% TTO = % of Test Triples Observed].

Outline

- What is lifelong learning?
- Continual learning and meta-learning
- Open world learning
 - Its use in Intelligent Personal Assistant
- Learning on the job in the open world
 Continuous knowledge learning in chatbot

Summary

- LL wants to enable an AI agent to learn continuously and to make use of knowledge learned in the past to help future learning and problem solving.
- A large space with huge challenges (Chen & Liu, 2016, 2018 book):
 - Correctness and applicability of knowledge, knowledge representation and reasoning, composition, interactive learning, etc.
- Learning in conversation interactively is promising.
 - Without it, a chatbot will not be intelligent.
 - Next generation of chatbots should have the self-learning capability.



2nd edition

References: https://www.cs.uic.edu/~liub/lifelong-learning.html